Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
PLoS Pathog ; 19(3): e1011167, 2023 03.
Article in English | MEDLINE | ID: covidwho-2286901

ABSTRACT

Despite the availability of effective vaccines, the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suggests that cocirculation with other pathogens and resulting multiepidemics (of, for example, COVID-19 and influenza) may become increasingly frequent. To better forecast and control the risk of such multiepidemics, it is essential to elucidate the potential interactions of SARS-CoV-2 with other pathogens; these interactions, however, remain poorly defined. Here, we aimed to review the current body of evidence about SARS-CoV-2 interactions. Our review is structured in four parts. To study pathogen interactions in a systematic and comprehensive way, we first developed a general framework to capture their major components: sign (either negative for antagonistic interactions or positive for synergistic interactions), strength (i.e., magnitude of the interaction), symmetry (describing whether the interaction depends on the order of infection of interacting pathogens), duration (describing whether the interaction is short-lived or long-lived), and mechanism (e.g., whether interaction modifies susceptibility to infection, transmissibility of infection, or severity of disease). Second, we reviewed the experimental evidence from animal models about SARS-CoV-2 interactions. Of the 14 studies identified, 11 focused on the outcomes of coinfection with nonattenuated influenza A viruses (IAVs), and 3 with other pathogens. The 11 studies on IAV used different designs and animal models (ferrets, hamsters, and mice) but generally demonstrated that coinfection increased disease severity compared with either monoinfection. By contrast, the effect of coinfection on the viral load of either virus was variable and inconsistent across studies. Third, we reviewed the epidemiological evidence about SARS-CoV-2 interactions in human populations. Although numerous studies were identified, only a few were specifically designed to infer interaction, and many were prone to multiple biases, including confounding. Nevertheless, their results suggested that influenza and pneumococcal conjugate vaccinations were associated with a reduced risk of SARS-CoV-2 infection. Finally, fourth, we formulated simple transmission models of SARS-CoV-2 cocirculation with an epidemic viral pathogen or an endemic bacterial pathogen, showing how they can naturally incorporate the proposed framework. More generally, we argue that such models, when designed with an integrative and multidisciplinary perspective, will be invaluable tools to resolve the substantial uncertainties that remain about SARS-CoV-2 interactions.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Humans , Animals , Mice , SARS-CoV-2 , Influenza, Human/epidemiology , Coinfection/epidemiology , Ferrets
2.
J Infect Dis ; 225(2): 199-207, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1634219

ABSTRACT

BACKGROUND: Circulation of seasonal non-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) respiratory viruses with syndromic overlap during the coronavirus disease 2019 (COVID-19) pandemic may alter the quality of COVID-19 surveillance, with possible consequences for real-time analysis and delay in implementation of control measures. METHODS: Using a multipathogen susceptible-exposed-infectious-recovered (SEIR) transmission model formalizing cocirculation of SARS-CoV-2 and another respiratory virus, we assessed how an outbreak of secondary virus may affect 2 COVID-19 surveillance indicators: testing demand and positivity. Using simulation, we assessed to what extent the use of multiplex polymerase chain reaction tests on a subsample of symptomatic individuals can help correct the observed SARS-CoV-2 percentage positivity and improve surveillance quality. RESULTS: We find that a non-SARS-CoV-2 epidemic strongly increases SARS-CoV-2 daily testing demand and artificially reduces the observed SARS-CoV-2 percentage positivity for the duration of the outbreak. We estimate that performing 1 multiplex test for every 1000 COVID-19 tests on symptomatic individuals could be sufficient to maintain surveillance of other respiratory viruses in the population and correct the observed SARS-CoV-2 percentage positivity. CONCLUSIONS: This study showed that cocirculating respiratory viruses can distort SARS-CoV-2 surveillance. Correction of the positivity rate can be achieved by using multiplex polymerase chain reaction tests, and a low number of samples is sufficient to avoid bias in SARS-CoV-2 surveillance.


Subject(s)
COVID-19 , Coinfection , Respiratory System/virology , Respiratory Tract Infections/virology , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Disease Outbreaks , Humans , Models, Theoretical , Multiplex Polymerase Chain Reaction , Pandemics , Polymerase Chain Reaction , Sentinel Surveillance
SELECTION OF CITATIONS
SEARCH DETAIL